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SUMMARY 

The input conductance of an i n f i n i t a  antenna formed by a c y l i n d r i c a l  tubular 

conductor of internal impedance zi is obtained, together with the  ohmic l o r e  and 

t h e  rad ia ted  power which cont r ibu te  t o  the  input conductance, 

t h e  ohmic lo se  on the  antenna behaves l i k e  l / [ l o g  I l/z I ]  f o r  small z , r a the r  

than a small perturbation of order z 

The i n f i n i t e  antenna with zero i n t e r n a l  impedance i s  of very d i f f e r e n t  charac te r  

from t h a t  with non-vaniehing zi,  even when e 

t h ro ry  may be v e r i f i e d  experimentally with an antenna of f i n i t e  length provided 

t h e  i n t e r n a l  impedance is no t  too low; 

It is found t h a t  

i i 

i Several conclusione may be drawn: (1) 
t 

i i r  q u i t e  small; (2) The prerent 

I 

(3) I n  t h e  theory of t h e  very  long 

antenna t h r  i n t e r n a l  impedance i e  not  neg l ig ib l e  f o r  a l l  p r a c t i c a l l y  ava i l ab le  

metalr. A br iof  q u a l i t a t i v e  dircuseion of the  very long antenna i e  given t o  

i n d i c a t e  the  nard f o r  f u r t h e r  rtudy on tha t  r u b j r c t .  

INTRODUCTION 

I n  the theory of t h e  antenna as a boundary-value problem, the  antenna has 

usua l ly  been assumed t o  be made of a pe r fec t  conductor s ince  t h e  condu&ivities 

of p r a c t i c a l l y  ava i l ab le  metals a re  very high. The cur ren t  d i s t r i b u t i o n  and t h e  

inputt admittance of an antenna made of metal are of ten  obtained under t h e  assump- 

t i o n  of i n f i n i t e  conductivity and t h e  effect  of the  f i n i t e  conductivity is of t en  

regarded as a small perturbation. The per turba t ion  i s  indeed s m a l l  f o r  a s h o r t  

antenna. A6 the  antenna becomes longer, or i n  the extreme when it i s  i n f i n i t e l y  

long, the  s i m i l a r i t y  between an antenna with i n f i n i t e  cond ic t iv i ty  and that wi th  

high but  f i n i t e  conductivity disappears, Since the cur ren t  on the i n f i n i t e l y  
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long antenna with i n f i n i t e  conductivity i s  not square in tegrable ,  per turba t ion  

theory cannot be applied i n  a straightforward mannero 

I n  order t o  see the  e f f e c t  of f i n i t e  conductivity on long antennas, i t  

seems l o g i o a l  t o  t r y  t o  study the  i n f i n i t e  antenna f i r s t ,  

t h e  input  conductance of an i n f i n i t e l y  long antenna formed by a c y l i n d r i c a l  

I n  t h i s  repor t  

tubular  conductor of i n t e r n a l  impedance zi is  obtainedb together with the  ohmic 

l o s s  and the rad ia ted  power which cont r ibu te  t o  t h e  input conductance. It is  
i found t h a t  t he  ohmic loss on t h e  antenna behaves l i k e  1/ [log( l/z I ] f o r  small 

zi, r a t h e r  than l i k e  a small per turba t ion  of order z i 

THE SOLUTION 

L e t  t he  r ad ius  of t he  i n f i n i t e l y  long tubular  antenna be a, t he  i n t e r n a l  

i impedance pe r  u n i t  length be z . 
Z(z) on t h e  antenna holds 

The following i n t e g r a l  equation f o r  t he  cur ren t  

and z is t h e  axial  coordinate; 5 ,  is t he  i n t r i n s i c  impedance of f r e e  space, 

and k is  t h e  free-space wave number, The t i m e  dependence is taken t o  be e -iwt 

where w is t h e  angular frequency of t he  dr iv ing  source which is assumed t o  be a 

delta-function generator of u n i t  voltage.  

m Def fne  

then  from (1) 
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I n  (2), z(c) = nLJ ( a m )  H ( ' ) ( a L )  2 2  [2] ,  with branch c u t s  chosen as shown 
0 0 

i n  Fig, 1. 

r e a d i l y  obtained from (2)  with t h e  Fourier i n t e g r a l  theorem: 

T h e  input conductance G which is defined as G = l i m  Re  I(z) is 
Z-*o 

I n  (3 ) ,  t he  Bessel funct ions Jo and Y have arguments a& 2 2  and t he  modified 

Bessel funct ions Io and KO have arguments a m 5 

0 

e 

T h e  input conductance G can be separated @to  three pa r t s ,  namely, 

4zR 
I3  

dy = -  
5 O  

2 2  GH3 - to [(y2-1)21 K 9 ZI] 9 ZR 
4zR 

0 .o 

2x f ZR = - R e  z , 
5O 

i 2x  Im z 
5O 

= - -  

( 4 4  

The arguments of J 0 and Yo are ak F 1-y , the  arguments-of Io and KO are ak 6. y 

ZI is pos i t i ve  i f  zi is inductive.  
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The ohmic lo se  on t h e  antenna can be expreeeed as t h e  i n t e g r a l  of t h e  

square of t he  absolute valug of I(%) along z: 
0 

i 2 Re z II(e) I de Ohmic l o r e  - 2J 
0 

(5) 

According t o  Par reva l ' r  formula, (5) can be wr i t t en  as t h e  i n t e g r a l  of t h e  

square of t h e  abro lu te  value of y(t) along real C: 

Thus GH- GH2+ GN3 can be i d e n t i f i e d  as one component of t h e  input conductance 

representing the  ohmic loee on the  antenna. The o the r  component, t h e  rad ia ted  

power, i 4  thus represented by GR. That i e ,  

1 Radlated power - y GR. 
f 

The above r e l a t i o n  can ale0 be obtained by i n t eg ra t ing  t h e  Poynting vector over 

a l a r g e  ephere, 

APPROXIMATIONS 

The i n t e g r a l s  fl through I defined i n  (4) can be evaluated approximately 3 
i i n  t h e  l i m i t  of smell z 

2 

provided the  antenna is "thin" i n  t h e  sense t h a t  

(68) n - 2 log  *> 1 

zi is ea id  t o  be small i n  the sense that  

Under condition (6a), the Bessel functions i n  the integrands of I 

replaced by t h e i r  l imi t ing  forms f o r  small arguments, 

and I2 can be 1 

Simi la r ly ,  the  modified 

Bessel func t ions  i n  the integrand of I3 can also be replaced by t h e i r  small 

argument counterparts s ince  the major cont r ibu t ion  t o  I comes from near y - 1. 3 
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Therefore, under (6a)p I through Ig can be expressed as follows: 1 

y - 0,57721566 

The logarithmic funct ions i n  (7b) and (7c) are fu r the r  approximated by constants  

such t h a t  log(1-y ) is replaced by log  E ,  i n  (7b) where 6, s a t i s f i e s  2 

( 8 4  
2 

( E , T  + 2,) + t S 2 ( Q  - 2 Y  - log E 2 ) +  2,12 = (K2+ 1) 1z12 

2 and log(y -1) is replaced by log  F3 i n  (7c) where E3 s a t i s f i e s  

If K is treated as a constant,  the above two equations can be solved f o r  

E2 and E by i t e r a t i o n .  Generally, one o r  two i t e r a t i o n s  are good enough f o r  3 
t h e  purpose of ca luc la t ing  Q2 and Q, which are defined by 

1 
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I n  the  l i m i t  as both ZR and ZI approach zero, 

2, 

1 r 
J 

Since K appears o n l y % i n  the  argument of the logarithmic function, no cri t ical  

accuracy i s  required f o r  i t s  solut ion.  

i n  t h e  Appendix, where i t  is found t o  be approximately e, or 2.71828... e 

The determination of K is  car r ied  out 

Up t o  t h i s  point  the Q(y) functions i n  (ab) and (7c) are replaced by the  

constafrts Q and Q, r espec t ive ly  [ (8c) ] ,  and no f u r t h e r  approximation is 

needed t o  car ry  out the  in tegra t ionso  
2 

Note t h a t  as the  logarithmic funct ions 

rep lace  t h e  Bessel funct ions [from (4) t o  (7)], equivalent ly  an e x t r a  zero 

is introduced i n  the  denominator of (21, This extra zero is located near t he  real 

axis though f a r  away from y = 1. Therefore, s t r i c t l y  speaking, t he  l i m i t s  of 

t he  i n t e g r a l  

A is a constant no t  l a rge  enough to  br ing about the  c m t r i b u t i o n  from the  extra 

ze ro  but  l a rge  enough bo take i n t o  account the  contr ibut ion near  y - 1. 

a f t e r  t he  approximation (8b) has been intnoduced, the  extra zero is  eliminated 

and t h e  precaution of wri t ing  A instead of 

(7c) become8 unneceeeary, 

I i n  t he  form of ( f e )  should have been wr i t t en  from 1 t o  A, where 3 

But 

i n  the  upper l i m i t  of the  i n t e g r a l  

The denominatmsof t h e  integrands of I2 and P are polynomials. These two 3 
i n t e g r a l s  can both be transformed i n t o  the  following form: 

OD m 

where A and p are meal, This is in tegrable  and the  r e s u l t  is 
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J(ABp' r(O + 0 ) - b log[ 41 32 

1 b = (1+A 2 ) 'I4 ah(- tan-lA 
2 

-1 TI O a t a n  - A ~ T  - 

-1 b 
ebl - 2 tan (-) P-r , 0 L 841 2 

o < e  < T I  

32 
-1 b - - 032 = 2 tan (-) , 

p+r 

I? and I3 can then be expreered i n  termr of J(A,p) . 

2Q3zR '3 

L L  

Bg = (1 --I.) e 

Q, 
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as 

In  t h e  limit as both ZR and 

f ollowa : 
2, 

(1 = 2) 
a 2Q2 

I2 

approach mro ,  

( 1  9 2 )  
l og  - zR [ e  - - 

4Q3 
# 2Q3 

I3 
2Q32R 

whrrr 

0 2 8 - tan 

Thus 

%2 a 
41( 
Go 2Q2 

A 1 - -  

2, 
2Q2 ) 

1.- A 
Q2zR 

I2 and I3 can be 

I 

expreesrd 

zR 4Q3 ] 2 

log Tq- ( i + I ,  [ e - -  4 1  
%3 -- Go 2Q3 2Q3 2Q3 , 

where the  l i m i t i n g  forme of the  Q's are given i n  (8c). It can then be concluded 

f o r  t h a t  t h e  ohmic l o s s  on t h e  antenna behaves i n  t h e  same manner as l / ( l o g l T I )  1 
i z 

small e 

Although the  foregoing approximations are intended f o r  small I Z I , numerical 

checks show t h a t  ( f l a )  and ( l l b )  are good approximations f o r  (4b) and (4c) , 
respec t ive ly ,  UP t o  Z - 10. R 

3; The I i n t e g r a l  i n  the  form (7a) is of d i f f e r e n t  character from I and I 2 1 
t h a t  is, unlike the  la t ter  two, I1 is i n t eg rab le  i n  the  l i m i t  as ZR= ZI approaches 

zero,  This l i m i t  is exac t ly  the  input  conductance of a pe r fec t ly  conducting, 
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i n f i n i t e l y  long 

I . .Io 

then 

Io - 

antenna i f  it i e  mult ip l ied  by the  constant 4n/coO Let 

The f i r s t  i n t e g r a l  can be in tegra ted  exac t ly  and is equal t o  1/2C where 

C - SI - 2y0 

2 the  term t and then expanding in,powers of 1 / C .  

The second i n t e g r a l  is obtained approximately by f i r s t  neglec t ing  

It is approximately equal t o  

2 
- 1 log 2 t 
C2 c3 X 

[ ( log  2 ) 2 t  2J -dx] e . 
1 log 2 

a - +  
I O  2c c2 

The following two f a c t s  should be noted: (1) I1 approaches Io i n  t h e  

l i m i t  of vanishing } Z l  and 

I1 and t h a t  of Io f o r  small l Z l  is in t he  small region from y - 
y = 1, where 

expressed a8 f o l l w e  f o r  B m a l l  121 : 

(2) t h e  main d i f fe rence  between t h e  integrand of 

t o  

Thus, I1 can be is a emall quantity of t h e  order of [ Z l / C .  1 

(1-y') dy 
2 2  2 2', 2 

0 l(1-Y ) T I  + l ( 1 - Y  )(C-log(l-y ), ] 

This  can be in tegra ted  by following the same s t e p s  of i n t eg ra t ion  as f o r  I 

The r e s u l t  is 
4 ,  0 

1+- 
log(2-x) dx +'I X 

c3 1 
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Here El f a  t r ea t ed  as a constant. Since E appears only i n  the  arguments 1 

of the  logarithmic functions,  i t s  value cannot c r i t i c a l l y  a f f e c t  t h e  value of I1 

given i n  (12a) As mentioned, E, is of the  order  of 121 /C f o r  small 121 , which 

i s  a property Bfmilar t o  E2 and E3 defined i n  (8 )"  Numerical checks show t h a t  

i f  t he  value of t2 is used f o r  El, I1 i n  t h e  exact form of (4a) is represented 

s a t i e f a c t o r f l y  by the  approximate form in (12a) up t o  ZR= 1. 

can be wr i t t en  as 

For ZR< 1, (12a) 

For ZR in t h e  range of 1 t o  10, 11, 12, and Ig are of t h e  same character.  

Since t h e  l a t te r  two are found t o  be w e l l  approximated by t h e  forms of ( l l a )  

and ( l l b )  up t o  ZR= 10, t he  same thing can be done f o r  I1 i n  the  range 

1 ZR < 100 Thus, 

1 
2 d  

I1 - ' [ ( l-y2) T+Z~;~+ d l (l-y2) Qp+zI 1 -i ( l-r2) r + z R ~ z + ~ ~ l - Y 2 )  Ql+zI 1 
0 

The f i r s t  i n t e g r a l  is exactly 12, t h e  second i n t e g t a l  can be transformed i n t o  t h e  

form of (9) i f  t he  va r i ab le  y i r s  changed t o  l/z. The r e s u l t  is 

where 

aL P = n(ZR+a) 9 Q2(Q2+Z,> 

Equation ( 1 2 4  can be checked numerically aga ins t  t h e  exact form of (4a). It is 

found t o  be i n  good agreement with the Patter, Furthermore, (12b) and (12c) 

over lap  near ZR= 1, 
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Figo 2 shows some numerical reeultr, The input conductance G together with 

G 

impedancr ZR which ranges from 10 t o  IOo5 with ZI= 0, This corresponds t o  an 

antenna formed by a t h i n  layer  of conductive coatingo I f  a good conductor is 

used and skin e f f e c t  e x i e t s ,  ZI= ZR and they are of t he  order 10” t o  

case is a l r o  shown graphica l ly  i n  Fig. 2. 

( r ad ia t rd  power) and GH (ohmic loss) are p lo t t ed  aga ins t  t he  normalized internal R 

This 

The r e s u l t s  show t h a t  i n  the  case 

ZR >> ZI, t h e  ohmic l o s s  is of the  same order of magnitude as the  rad ia ted  

power unless  2 i s  extremely small (sag, less than When sk in  e f f e c t  is 

s i g n i f i c a n t  ZIm Zk, and GH is only about one-half as g rea t  as when ZI= 0, so 

t h a t  t he  input conductance is qu i t e  d i f f e r e n t  from t h a t  of a p e r f e c t l y  conduc- 

R 

t i n g  antenna. 

CONCLUSIONS 

The following conclusions can be drawn from the  foregoing ca lcu la t ion :  

(1) The i n f i n i t e  antenna has qu i t e  d i f f e r e n t  p rope r t i e s  when i ts  i n t e r n a l  imped- 

ance ie zero than when zi is  non-vanfehing, even when zi is q u i t e  small. (The 

input impedance af t he  Pormer has been obtained, €or example by Papas [3]; t h e  

cu r ren t  d i e t r ibu t fon  has been worked out,  f o r  example by Kunz [4].) 

(2) The p r r r en t  theory may be v e r i f i e d  experimentally with an antenna of f i n i t a  

length  provided the  i n t e r n a l  impedance is not too low, 

(3) I n  the thoorg of t he  very long antenna the  i n t e r n a l  impedance is not  negli-  

g i b l e  f o r  a l l  p r a c t i c a l l y  ava i lab le  metals, 

modified when zf d i f f e r s  fssm zero, 

antenna becomes longer or  as the  impedance p e r  u n i t  length becomes l a r g e r .  

above statement is i l l u s t r a t e d  by the  q u a l i t a t i v e  sketch of Fig. 3. The i n i t i a l  

s l o p e  of t h e  loss  curve of a long antenna is determined by the  antenna length; a 

pe r tu rba t ion  method may be used t o  ca l cu la t e  i t ,  

The cur ren t  d i s t r i b u t i o n  is grea t ly  

This e f f e c t  should be more apparent as the  

The 

For l a r g e r  zi, t h e  l o s s  curve 

, . 9 t ?  
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j o i n s  tho cuwa of t he  i n f i n i t e l y  long antenna with the  same e' s ince  tho curront 

on tho long antenna should be attenuated to  eush a m a l l  quant i ty  at t h e  ends 

t h a t  any ins roasa  of t h e  antenna length would not  a f f e c t  the  cur ran t  d i s t r i b u t i o n ,  

But ,  for  moderate ai, o r  f o r  very long antennaan the  behavior requi res  f u r t h e r  

, .  

8tudy 
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APPENDIX 

Thir appendix is devoted t o  the est imat ion of t he  constant K i n  t he  approxi- 

motionr a r roc ia t rd  with (8) It is arsvlmed t h a t  ZI= 0. The problem i r  t o  

dr t r rminr  K 80 that the  logarithmic function can be replaced by a constant 

drtrrmined by (8) without excessive e r r o r ,  

t o  approximating 

The question is ac tua l ly  equivalent 

00 

dx 
2 rn [x2(C - Bog x) * 11 s 

0 

OD 

dx ' (x2Q2+ 1 9  0 

with Q G - log x ~ ,  x0(C - l og  x0) K O  

The i n t e g r a l  (A-19 is eesen t i a l ly  I3 i n  (7s) ;  z q  i s  proport ional  t o  Zgr 

2 C corresponds t o  f i ,  and x is proport ional  Its y -1, 

Take the  d i f fe rence  of the above two i n t e g r a l s  
m 

dx 

dx dx 
x 2 -' [Q-log - X 3 +k)v'Y+z"x 
0 

0 

Expand the f f r e t  i n t e g r a l  SQ that  the first term cancels the second in t eg ra l ,  

.-h _ _  and the  r e s u l t  fs 
L X 

X 
00 x log  - 

0 

2 2  2 d x  * 2Ql ICGG (x Q $1) 0 
(A-39 



, . 
I . ,  A-2 

8 

xo l e  determined by K as defined in (A-lj0 

hand aide of (A-3) I s  zero0 

K ie t o  be chosen 80 that the right 

2 2  Let t - x Q 

It is d i f f i e u h  to  Integrate (A-4) In general, but It l e  known for  two special  

cases: 

Caee Lo z '  = 0 

Let 

0 

I T log t 
F1(') = J" 

0 

Therefore, (A-5) i~ equivalent to 

The Integral (A-6) is known [Ref 5 ,  p u  91 

al(r) = (T + Y ) T  1 aec T T  

2 3 2,  K 1 e = 2,71828 log K = - T I 2  

and 

Case 11, o e  + .DD 



.. 

? . 

# 

. 

A- 3 

F2(r) l a  oleo known [Ref, 5,  p o  93 

K = 1,536, 2 log K =' 4 - x ,  

Thus, i t  seeme plausible to choose K equal t o  e - 2.71828 when ZR= lo-' t o  10 

i n  the numerical calculations, 

. 
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In  the above repor t  t he  authors  would l i k e  t o  make t h e  following correct ions:  

2 2  2 2  In  (3), ( C  -k ) i n  the second i n t e g r a l  should be changed t o  (k - C ). 
quently ZI in (44 and i n  ( 7 4  should be preceded by minus eigne. 

ca lcu la t ions  are v a l i d  except t h a t  f o r  I3 when Z Z 0. 

ZI= 0 only; and i n  (8d),  the  l i m i t  of log  C3 should be changed t o  

Conse- 

Subrequent 

Thus, (8b) is v a l i d  f o r  I 

log t3+ log(u,/n) f o r  ZI - 0. 

The l i m i t  of log  4, l e  correc t .  

expression f o r  B3 below ( l ldy are cor rec t  f o r  ZI- 0 only. 

above the  Conclusion should be deleted.  

The expression ( l l b )  and ( l l d )  f o r  I3 and the  

The last  aentence 

What remains t o  be done i s  t o  evaluate  I or  equivalent ly ,  % 3, 3' f o r  ZI# 0. 

Only t h e  case when 0 e ZI 5 ZR e< 1 i s  studied s ince  ZI- Z 

a r e s u l t  of sk in  e f f e c t .  

e< 1 f o r  metal as R - 

It is learned from previous ca lcu la t ions  t h a t  I3 as defined by ( 4 4  can be 

approximated by ( l lb )  f o r  ZI- 0 i f  the  condi t ions ( 6 )  are s a t i s f i e d .  L e t  

Note t h a t  the  cont r ibu t ion  to  A(ZI) is mainly from a small region near y - 1. 

The logari thmic funct ion Q (y) may then be  replaced by a proper constant:  3 
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I Under the  condition t h a t  ZI < ZR << 1, E3 can be,approximately chosen t o  be 

ZI/Q s ince  the  main cont r ibu t ion  t o  A(ZI)  i g  from the  region 0 < y2-1 5 c3. 
- 

i 

A(2,) i a  r ead i ly  obtained i n  terms of the  J-functions defined i n  (9) 
A. 

I 
when Q (y) is replaced by Q3, and the  3 

where ZI 1/2 
B; - (1+,) . 

Q3 

zR 

Q3 
Theref ore J(-s 1) 

13 .I A(Z1) + 
2zRQ3 

. 

r e s u l t  is 

zR 
J(-; I) 1) 

Q3 

2 z R ~ ;  

And f o r  0 < ZI < Zg << 1, and a l s o  under t h e  conditions (6) ,  - - 

% = - { p ( 7 + - ) + ( t a n  2 n 1  1 -1 - ) ( - - ) )I* 'R 1 1 

Q3 '1 Q2 Q, 
' 0  Q3 

Thus, % does no t  change s i g n i f i c a n t l y  as ZI is changed from 0 t o  ZR, as long 

as ZR << 1. A l l  above approximations have been checked by numerical i n t eg ra t ions .  
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Fig. 2 and Fig. 3 have been corrected and are shown i n  the following 

Fig. 4 shows the comparison between the approximate formula (C-5) pages. 

and the numerical integration of the exact fonnula (4c) for ss4 
agreement is found t o  be very good. 

The 
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a FIG. 3 LOSS CURVE OF ANTENNAS 

1 : INFINITE ANTENNA; 2 AND 3 : LONG 
ANTENNAS ( SKETCH) kh2 >kh, 



FIG. 4 COMPARISON OF THE APPROXIMATE FORMULA 
( C - 5 )  AND THE NUMERICAL INTEGRATION OF 
THE EXACT FORMULA ( 4 C )  FOR G H ~  


